Problem Set Information

- Tutor: Nelson Lam (nelson.lam.lcy@gmail.com)
- Prerequisite Knowledge:
 - Frenet Serret Equation
 - Differentiation by Part
 - Orthonormal Basis & Linear Combination
- References:
 - Lecture Notes of Dr. LAU & Dr. CHENG
 - Thomas Calculus
- Submission & Rewards
 - Complete at least 2 harder questions during tutorial Reward: Any drink from vending machine
 - Complete all unfamiliar non-standard questions within 72 hours at the date of release
 WARNING : Revising course material is probably a better way to kill time
 Reward: A free lunch & Respect from TA, Classmates
- All the suggestions and feedback are welcome. Any report of typos is appreciated.

1 Computational Question

Exercise 1.1 ((a) 2018 TDG Quiz 2 — (b) 2020 TDG Quiz 2 — (c), (d), 2023 TDG Quiz 2).

Compute the Frenet frame $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$, curvature κ and torsion τ of the space curves below.

(a).
$$\alpha(\theta) = (a\cos\theta, a\sin\theta, b\theta), \ \theta \in \mathbb{R}$$

(b).
$$\alpha(\theta) = (t - \sin t \cos t, \sin^2 t, \cos t), t \in (0, \pi)$$

(c).
$$\alpha(s) = \left(\frac{4}{9}(1+s)^{\frac{3}{2}}, \frac{4}{9}(1-s)^{\frac{3}{2}}, \frac{1}{3}s\right), s \in (-1,1)$$

(d).
$$\alpha(\theta) = \left(6\cos 2\theta\cos^3\left(\frac{2\theta}{3}\right), \ 6\sin 2\theta\cos^3\left(\frac{2\theta}{3}\right), \ \frac{1}{2}\cos 4\theta - \cos^2 2\theta\right), \ \theta \in \left(0, \frac{\pi}{4}\right)$$

Exercise 1.2 (2015 TDG Quiz 2).

Let $\alpha : \mathbb{R} \to \mathbb{R}^3$ be a space curve defined by: $\alpha(t) = (5 + 13\cos t, 12 + 5\sin t, 13 - 12\sin t)$

- (a). Compute the Frenet frame $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$, curvature κ and torsion τ
- (b). By considering $\frac{d}{dt} \|\alpha(t) v(t)\|^2$, where $v : \mathbb{R} \to \mathbb{R}^3$ is a space curve. Show that α is a circle and find its centre and radius

2 Warm up Question

Exercise 2.1 (Proposition 2.4.6 & Lecture Notes Exercise 11, 16).

- (a). Let $\mathbf{r}(t)$ be a regular parameterized space curve with curvature $\kappa(t) > 0$ for any t, show that \mathbf{r} is a plane curve if and only if its torsion $\tau(t) = 0$ for all t
- (b). Let $\mathbf{r}(t)$ be an regular arc length parameterized space curve with curvature $\kappa(s) = \kappa$ is a constant and $\tau(s) = 0$ for any s. Show that $\mathbf{r}(s)$ lies on a circle. What is the radius of the circle ?

Hints: Try to show that $\frac{d}{ds}\left(\mathbf{r}(s) + \frac{1}{\kappa}\mathbf{N}(s)\right) = 0$

Exercise 2.2 (Lecture Notes Exercise 14).

Let $\mathbf{r}(t)$ be a regular parameterized plane curve with curvature $\kappa(t) > 0$ for any t. Let $\lambda > 0$ be a constant, the parallel curve $\mathbf{r}_{\lambda}(t)$ is defined by:

$$\mathbf{r}_{\lambda}(t) \stackrel{\text{def}}{=} \mathbf{r}(t) - \lambda \, \mathbf{N}(t)$$

where $\mathbf{N}(t)$ is the unit normal vector to \mathbf{r} at t. Show that the curvature of $\mathbf{r}_{\lambda}(t)$ is $\frac{\kappa}{1+\lambda\kappa}$

Exercise 2.3 (2023 TDG Quiz 2).

Let $\mathbf{r}(t)$ be a regular parametrized space curve with $\kappa(t) > 0$ for any t. Denote the torsion at $\mathbf{r}(t)$ by $\tau(t)$. Prove that $\mathbf{r}(t)$ is contained in a plane if and only if $\tau(t) = 0$ for any t.

(Hint: A space curve **r** is contained in a plane if there exists a fixed unit vector **n** such that $\langle \mathbf{r}, \mathbf{n} \rangle$ is a constant.)

3 Standard Question

3.1 Lies on Sphere

Exercise 3.1 (Lecture Notes Exercise 17).

Let $\alpha(s)$ be a regular space curve with arc length parameterization. $\mathbf{N}(s)$ and $\mathbf{B}(s)$ are the unit normal and unit binormal to the curve respectively. Let $\kappa(s)$ and $\tau(s)$ be the curvature and torsion of the curve. Suppose $\alpha(s)$ lies on the unit sphere for any s

(a). Prove that
$$\langle \alpha, \mathbf{N} \rangle = -\frac{1}{\kappa}$$
 for any s

(b). Prove that $\alpha = -\frac{1}{\kappa} \mathbf{N} + \frac{\kappa'}{\kappa^2 \tau} \mathbf{B}$ for any s

Exercise 3.2 (2021 DG AS1, 2020 TDG Final). Assume that $\kappa(s) > 0$, $\tau(s) \neq 0$ and $\kappa'(s) \neq 0$ for all s for a regular curve $\alpha(s)$ parameterised by arc length. Show that α lies on a sphere if and only if:

$$\frac{1}{\kappa(s)^2} + \frac{\kappa'(s)^2}{\kappa(s)^4 \tau(s)^2} = \text{constant}$$

Exercise 3.3. Let $\alpha(s)$, where $s \in (a, b)$ be an arc-length parametrized space curve with $\kappa, \tau \neq 0$ everywhere. Show that α lies on the surface of some sphere if and only if

$$\frac{\tau(s)}{\kappa(s)} + \left(\frac{1}{\tau(s)} \left(\frac{1}{\kappa(s)}\right)'\right)' = 0.$$

3.2 Helix

Exercise 3.4 (Lecture Notes Exercise 18).

Let $\alpha(s)$ be a regular space curve with arc length parameterization. $\mathbf{T}(s)$ and $\mathbf{N}(s)$ are the unit tangent vector and unit normal vector respectively. Suppose $\kappa(s) > 0$ for any s and there exists a constant C and a constant unit vector \mathbf{u} such that $\langle \mathbf{T}(s), \mathbf{u} \rangle = C$ for all s

- (a). Show that $\mathbf{N}(s)$ and \mathbf{u} are orthogonal for all s
- (b). Using (a), show that there exists a constant θ such that $\mathbf{u} = \cos \theta \mathbf{T}(s) + \sin \theta \mathbf{B}(s)$ for all s

(c). Using (b) and Frenet Serret equations, show that $\frac{\tau(s)}{\kappa(s)} = \cot \theta$

Exercise 3.5 (2021 DG AS1). Prove that for a regular curve: $\frac{\kappa}{\tau} = \text{constant} \iff \langle \mathbf{T}, \mathbf{u} \rangle = \cos \theta_0$ for some $u \in \mathbb{R}^3$ and $\theta_0 \in [0, 2\pi)$

4 Harder Question

Exercise 4.1 (2014 TDG Final Exam, 2019 TDG Quiz 2).

Let $\mathbf{r}(s)$ be a unit speed curve in \mathbb{R}^3 with curvature $\kappa > 0$ and torsion τ , prove that the following two statements are equivalent

(1). \exists fixed point $p_0 \in \mathbb{R}^3$, two functions $\lambda(s), \mu(s)$ such that $\mathbf{r}(s) - p_0 = \lambda(s) \mathbf{T}(s) + \mu(s) \mathbf{B}(s)$

(2).
$$\frac{d}{ds}\left(\frac{\tau(s)}{\kappa(s)}\right)$$
 = Constant independent of s

5 Unfamiliar Non-Standard Question

Exercise 5.1 (2023 TDG Quiz 2).

Let $\alpha(s): I \to \mathbb{R}^2$ be a regular arc length parametrized plane curve. Suppose that $\mathbf{p} \in \mathbb{R}^2$ is a point such that $\alpha(s) \neq \mathbf{p}$ for all $s \in I$. Suppose there exists $s_0 \in I$ such that

$$\|\alpha(s_0) - \mathbf{p}\| = \max_{s \in I} \{\|\alpha(s) - \mathbf{p}\|\}.$$

Denote the curvature of α at $s = s_0$ by $\kappa(s_0)$. Show that

$$|\kappa(s_0)| \ge \min_{s \in I} \left\{ \frac{1}{\|\alpha(s) - \mathbf{p}\|} \right\}.$$

(Hint 1: recall the definition of relative extreme points in differential calculus.) (Hint 2: Any relations between inner product and norm?)

Exercise 5.2 (2022 DG AS1).

Let $\alpha : (a, b) \to \mathbb{R}^3$ be a regular smooth curve parameterized by arc length so that the curvature $\kappa(s) > 0$ globally. Let $s_0 \in (a, b)$. Show that for $s_3 > s_2 > s_1$ sufficiently close to s_0 , $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ do not collinear. prove that also as $s_i \to s_0$, the unique plane containing $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ will approaches to the plane spanned by $\mathbf{T}(s_0), \mathbf{N}(s_0)$